
Internal

IEC 61499:
primer course
Module 3: IEC 61499 standard

Valeriy Vyatkin
Luleå University of Technology and Aalto University

Internal

Example of a simple system FLASHER

4

Example: FLASHER
Consider a simple product Flashing Lights

Components of the physical system:
1. PLC (CPU)
2. START/STOP Button
3. Mode Selection Switch

§ All lights on, count up, count down, chase up and chase
down

4. Time Delay Nub
§ Delay between 2 consecutive light flashes

5. 4 LEDs

5

FLASHER modelled in software

6

The core
functionality is
captured in the
FLASHER4 FB in
a form of state

machine

FLASHER application

7

Model and simulate control logic with IEC 61499

Physical system

IEC 61499 executable model: Runs on PLC or PC (Soft PLC)

HMI
Runs on a computer

8

Distributed FLASHER
• It is beneficial to model the functionalities in a hardware independent way.
• Same block diagram can be executed on different types of controllers or even on a

distributed hardware architecture (running on a network of PLCs).

9

Motivation: Extensibility

10

Distributed deployment

11

Extended system

Internal

Common elements

13

Parts of IEC 61499 Standard
● IEC 61499-1:2012
o Function blocks - Part 1: Architecture

● IEC 61499-2:2012
o Function blocks - Part 2: Software tool requirements

● IEC TR 61499-3:2004
o Function blocks - Part 3: Tutorial information (withdrawn)

● IEC 61499-4:2013
o Function blocks - Part 4: Rules for compliance profiles

14

Function Block Model: IEC 61131-3

External Interface Specification

INBOOL
DB_TIMETIME

OUT BOOL
DEBOUNCE

Control Algorithm Specification

DB_FF

S1

R

Q1OFF_TMR

TON

IN

PT

Q

ET

OUT

DB_TIME

IN IN

PT

Q

ET

TON

ON_TMR

SR

IN

PT

Q

ET

TON

OFF_TMR

ON_TMR

TON

IN

PT

Q

ET

| |

IN

|/|

IN

(R)

OUT

(S)

OUT

DB_TIME

DB_TIME

15

IEC 61131-3 and 61499 Data Types

5/21/24

Signed Integers: SINT(8), INT(16), DINT(32), LINT(64)

Unsigned Integers: USINT(8), UINT(16), UDINT(32),
 ULINT(64)

Floating Point: REAL(32), LREAL(64)

Bit Strings: BOOL(1), BYTE(8), WORD(16),
 DWORD(32), LWORD(64) (TRUE, FALSE,
 1, 0, 255, 16#FF, etc.)

Character Strings: STRING(8)

Duration: TIME (t#2s, t#1500ms, etc.)

Time: TIME_OF_DAY or TOD DATE
 DATE_AND_TIME or DT
 (TOD#17:32:55.678 D#2005-06-07
 DT#2005-06-07-17:32:55, etc.)

Derived Data Types: array, enumerated, structured, …

16

Function Block Type System
● Library contains FB type definition
● FB types can be instantiated later
● Each FB instance can have its own
• configuration/setting
● Changes in FB types cause

automatic changes on
all instances

Library of FB
Types

FBType

FBInstance1

FBType

FBInstance2

FBType

FBInstance3

FBType

17

Motivation: Intelligent Automation Component

?
Cylinder Software Component

O1

O2

O3

I1

I2

I3

18

Communicating components

18

Cmp1

O1

O2

O3

Cmp2VAR
a: type1;
b: type2;
c: type3;
L: packet;
…

Cmp3

I1

I1

L.form(Cmp2.I1,a,b);
O1.send(L);
…

L.form(Cmp3.I1,a,c);
O1.send(L);
…

19

Message=Event + associated Data

a

b

c

EO1
EO2

k

m

n

EI1

EI2

l

Cmp1

Cmp2

Cmp3

20

Events
• Event

• Event variables
• Boolean

• 0 and 1
• No duration (short duration)

• IEC 61499 function block
can only be activated by an event

Event of
crossing the

line

21

Function Block: Header and Body

Upper part of FB
is called Header

Lower part of FB
is called Body

22

Function Block of IEC 61499: Interface

Event Inputs Event Outputs

Data Inputs Data Outputs

Head

Body

Event – data
association: if the
event occurs, only
the associated data
will be updated.

23

Function block: Event-Data Association
It is used to transfer data between FBs

Ø Event output “eo” of FB1 is connected by an association line to the event input “ei” of FB2.
Ø Once FB1 emits “eo”, it triggers the execution of FB2.
Ø The values of input parameters “d” and “e” will be updated before the execution starts

because they are associated with the event input “ei”.

1- FB1 emits event

4- associated data inputs are sampled to
FB2

3- event input is
triggered

2- associated data outputs
are updated ”on the line”

24

Event-data association

25

Event-data association

• Two instances FB1 and FB2 of the same FB type
• Suppose event FB1.CNF is emitted
• FB1.a is updated and value is sent to FB2.d.
• FB2.d is sampled
• FB1.b is not updated (no association). Therefore FB2.e will not receive the updated

value.

25

Instance Name

26

IEC 61499 Function Block Kinds
• Basic, Composite, and Service Interface Function Blocks

Execution
Control Chart

Algorithms

Internal
Variables

RSP(+)
SD_1,...,SD_m

ResourceApplication

PARAMS

INIT(+)

STATUS
INITO(+)

RD_1,...,RD_n

IND(+)

STATUS

startService

writeOutputs

readInputs

INIT(-)

STATUS
INITO(-)

endService

BFB CFB SIFB

27

XML Exchange Format

Internal

Basic Function Block

29

Basic Function Blocks

Execution
Control

Chart (ECC)

Event
Input

Data
Input

Event
Output

Data
OutputAlgorithms

Algorithms can be programmed
in PLC languages
• Structured Text
• Ladder Logic
• etc.

30

Execution Control Chart (ECC)

EC Action

Algorithm Event
Output

EC
Transitions

Event
Input

Boolean
Condition

EC State

EC State

Initial
EC State

31

Transition conditions

Guard
Condition

Event
Input

Boolean
Expression

1
Event input
Boolean expression over data
Event input {&}[Boolean expression over data]

A transition condition can be one of the
following:

Examples:

4. REQ [Input_Var=0]

New syntax

32

How does Basic Function Block work?

Step 1. The input variable values relevant
to input event are made available
Step 2. The input event occurs, the
execution control of the FB is triggered.
Step 3. The execution control function
evaluates the ECC and notifies the
scheduling function to schedule algorithm
for execution.
Step 4. Algorithm execution begins.
Step 5. The algorithm completes the
assignment of values for the output
variables associated with the event output.
Step 6. The resource scheduling function is
notified that algorithm execution has
ended.
Step 7. The scheduling function invokes the
execution control function.
Step 8. The execution control function
signals event at the event output.

33

How does Basic Function Block work?

RES1
RES2

LOGIC

C
B
A

CNFREQ
INITO

PARAMS
QI

INIT

INT
BOOL

EVENT

BOOL

BOOL

EVENT

BOOL

EVENT
EVENT

BOOL
BOOL

START

REQ&(PARAMS=1)&ACTIVE

1

CNFINIT

INIT

1

INIT MAININITO MAIN

CNFSHUT SHUT

REQ & (PARAMS=2)OR(QI=0)
1

ACTIVE:=1
RES1:=0
RES2:=0
QO:=1

] [] [

]/[

A B

C
()

RES1

] [] [

]/[

A B

RES1
()

RES2

ACTIVE:=0
RES1:=0
RES2:=NOT B
QO:=0

1
1
2
0 QO

34

Basic FB – execution control chart (ECC)

Basic concepts of
fbDA

Each state of ECC can have one or more
actions.
An action may have an algorithm call and an
output event emission, or both.

35

Lifetime of Event Input
EAE stops ECC execution when:

– There are no enabled transition conditions which have not been executed already in this run

Trick: assign an algorithm, ALG1, to STATE1, within which set
INIT:=False. This workaround is not portable.

36

Lifetime of Event Input
• The first transition with a true condition is executed

and the corresponding ECC status of the block is
occupied.

• The recently used transition is marked so that it
cannot be used a second time.

• Once there are no transitions to other ECC states
left to be fired, because they are already marked
and thus executed, or none of the remaining,
unmarked transition conditions proves to be true,
the markings of the transitions is reset.

• FB is waiting for next input event

37

Lifetime of Event Input
1

2

34

5

6

7

1

2
3

4
5

6

7

38

Example: A Basic FB that adds two real
numbers

39

A Basic FB to add Two Real Numbers

40

A Basic FB to Add Two Real Numbers

41

Running the basic FB to Add Two Real Numbers

42

A Basic FB to Add and Subtract Two Real Numbers

extend

43

A Basic FB to Add and Subtract Two Real Numbers

44

A Basic FB to Add and Subtract Two Real Numbers

44

45

A Basic FB that Adds and Subtract 2 Real Numbers

45

Internal

Composite Function Block

47

Composite Function Block
• Network of interconnected FBs
• No internal variables

• Latches storing the values of input and output events and data
• Nested composite-in-composite

48

Composite Function Block: Example
Computing OUT = X2 – Y2

Interface Implementation

Event

Data

49

Hierarchical composition

50

Composite Function Block
• Execution Control:

• No ECC
• No internal variables

• To ensure a particular order of execution, user can
implement a supervisor basic function block

51

Rules for event connections
Event split is equivalent to using E_SPLIT standard library FB

Basic concepts of
fbDA

=

52

Event merge
Event merge is equivalent to using E_MERGE standard library FB

Basic concepts of
fbDA

=

53

Data connections
Data connections – cannot be merged, but data split is allowed.

Basic concepts of
fbDA

Internal

Service Interface Function Block

55

Service interface function blocks (SIFB)
• Mechanisms for interacting with hardware resources
• PC and different vendor printers – need drivers to command printer to print and get status

information
• Similar with SIFB – to get data from sensors and PLCs, and control actuators
• SIFB implementation requires low level knowledge of particular hardware
• Provided by vendor
• Encapsulation of IP

55

HP, DELL,
EPSON,
CANON,
XEROX, Konika
Minolta,
RICOH

drivers

56

Service Interface Function Blocks (SIFB)
• Modelled as sequences of service primitives per ISO TR 8509

56

57

Operations with events

57

58

Process interface: read inputs and write outputs

58

Internal

Elements of Distributed systems

60

Resource Model
● The main execution container of FB network
● Each Resource is independent of other Resources in the device
● Access to Communication and Process interfaces via SIFBs
● Responsible for the scheduling of FBs

60Process interface(s)

Communication interface(s)

SFBSFB
FB Network

Scheduling Function

Communication mapping

Process
mapping

61

Resources – scheduling functions
• Schedule algorithms for execution
• Determines sequence

• Of FBs execution
• Of algorithms execution

62

Device Model
• An abstract model represents a physical instrument

interacting with automation systems or process information,
e.g.
o PLC, CNC, microcontroller, etc.

63

Device Model
● A Device is specified by it

process interfaces and
communication interfaces
o Process interface is the

mapping between the
physical entities (sensors,
actuators) and the Resource

● Contains multiple
Resources

● All Resources use the
same Communication and
Process interfaces of the
Device

63

Resource 1 Resource 2 Resource 3

Process interface(s)

Communication interface(s)

Application A

Application B Application C

64

Device model: example of use

64

65

Device classes
Class 1
• New instance of FB library

Class 0:
• Preprogrammed FB

instances
• FBs connections can

be changed

Class 2
• Fully reprogrammable
• Can create FB types

66

Device type definition
Interface of the device may have only data inputs.
Example: SE.DPAC.M251_dPAC
• Deployment IP Address:Port
• HMI IP Address:Port
• Watch IP Address:Port
• Archive Service IP Address:Port

67

Resource type definition
• EMB_RES_ECO, PANEL_RESOURCE, VIEW_RES

• Default function block START of E_RESTART

68

Device management
• By default, devices contain resource MGR
• KERNEL of TYPE DM_KRNL
• Executes received management commands
• Configuration tool manages the device

69

Device management
• Dev_MGR receives commands in XML
• Replies back with confirmation or errors

70

Device management
• Dev_MGR receives commands in XML
• Replies back with confirmation or errors

71

Application
● Application is a design artefact
● Consists of a network of FBs
● Designed independently from hardware where it will be deployed to
● Deployment: mapped to one or several devices

72

Application: Example

73

Subapplication
• Type definition, like for function blocks
• Interface, but without event-data associations
• Defined by a function block network, like Composite FB

No latching of events and data,
direct propagation

74

System Configuration
● Represents the physical deployment of the design
● Consists of:

o Communication network
o Devices
o Controlled process and machines

Device 2 Device 3 Device 4Device 1

Application A

Appl. C Application B

Controlled process/machines

Communication network

75

Distribution of Application

75

Event flow

Data flow

Application
=

Function Block
Network

Device 2

Communication network

Device 3 Device 4Device 1

Application A

Appl. C Application B

Controlled process/machines

System
=

Communication
Network

+
Devices

+
Process/Machines

• Application can be deployed to
several devices

• A device in the system can
contain and execute parts of
different applications

76

Distribution of Application

76

Tools usually insert
the communication
blocks automatically

Internal

Example: Distributed systems configuration

Internal

Example: Distributed systems configuration

Internal

Composite Automation Type (CAT)

80

Composite Automation Type (CAT)

80

Object-oriented mechanism of creating visualisation for automation projects
Object-oriented
Self-contained
Reconfigurable

Each CAT consists of:
Visualization symbols
Control logic
Plant models
HMI and I/O connections

Supports:
Direct hardware interaction
Automatic deployment of control logic

81

CAT
● Software representation of real

instruments/devices, e.g. pump
● Predefined control structure

with abstract hardware
interface

● Automatic HMI configuration
and connection

81

82

System architecture with an implicit HMI device

82

83

Application with CATs

83

84

Model of Composite Cylinder

84

21/05/2024

85

CAT creation

85

86

How does a CAT work?

86

87

Normal establishment

87

88

Normal operation

88

89

Normal termination

89

90

Operation is inhibited

90

Internal

Event-handling Function Blocks

92

Count UP

BOOL
UINT

UINT

Action

Output event

Algorithm

93

Count down

BOOL
UINT

UINT

94

Count UP/Down

BOOL

UINT

UINT
BOOL

95

E_CYCLE

TIME

96

Data latch

BOOL BOOL

CLK

D

EO

Q

97

Event switch E_SWITCH

BOOL

EI

G

EO0

EO1

98

Event demultiplexor

UINT

99

Boolean falling edge detection

BOOL

EI

QI

EO

100

Boolean raising edge detection

BOOL

EI

QI

EO

101

E_MERGE

102

Train of events

103

E_TABLE_CTRL

UINT
TIME[4]

In this example N<=4

TIME
UINT

104

Table-driven sequence of events

UINT
TIME[4] UINT

105

Controlled Event propagation E_PERMIT

BOOL

106

107

RS, SR triggers

BOOL

BOOL

108

Event selector

BOOL

109

Event splitter

110

Event driven toggle of a Boolean output

BOOL

Internal

